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INTRODUCTION

Identifying habitat use by top predators is neces-
sary for understanding community interactions and
for defining and implementing management goals.
The home range of top predators consists of a mosaic
of varying habitat patches that represent different
communities of organisms. In contrast to terrestrial
systems, top-down control predominates in marine
ecosystems (Paine 2002, Shurin et al. 2002, Duffy
2003); predators play a greater role in influencing
population and community structures, and ulti-
mately, ecosystem functions (Stachowicz et al. 2007,
e.g. Casini et al. 2012). Thus, determining important
habitat patches for predation, within the larger home
range of a predator, is essential for understanding

community interactions and the possible conse-
quences of environmental disturbance, providing
important information for implementing manage-
ment plans.

The impact of marine predators on community
structure and function has been described in several
well-established examples of top-down control that
include the seastar Pisaster ochraceus in rocky inter-
tidal communities (Menge et al. 1994) and sea otters
in kelp forests (Estes & Duggins 1995, Estes et al.
1998). In addition to these classic examples, studies
demonstrate that as large marine predators such as
sharks and marine mammals decline, large cascad-
ing effects can result (Jackson et al. 2001, Estes et al.
2011). Some of these effects may include shifts in
population sizes at different trophic levels, as well as
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changes in the behavior of prey (Dill et al. 2003,
 Heithaus et al. 2008, Burkholder et al. 2013).

Observation of habitat use and foraging behavior
for most marine top predators is logistically challeng-
ing due to large home ranges, typically elusive
behavior, and low population densities (Heithaus &
Dill 2002). The bottlenose dolphin Tursiops trunca-
tus, however, is an apex predator that is amenable to
foraging studies due to their visible surface behavior,
tendency to form groups, and well-documented pop-
ulations of recognizable individuals.

Dolphin habitat use is likely shaped in part by prey
distribution (Allen et al. 2001, Degrati et al. 2012).
The mechanisms used by dolphins to detect prey in
the wild are not completely understood, but 4 senses
may be employed: echolocation, passive listening,
vision, and electro-reception (Czech-Damal et al.
2012). While the echolocation abilities (Murchison
1980, Au 1993, Tyack 2000) and visual adaptations
(Herman et al. 1975, Mobley & Helweg 1990, Tyack
2000) of dolphins have been well-documented, re -
search efforts have only recently considered passive
listening. The abundance of soniferous prey, includ-
ing scaenid and haemulid fish, in the stomachs of
dolphins suggests that passive listening may be an
important means of prey detection (Barros & Odell
1990, Mead & Potter 1990, Barros 1993, Barros &
Wells 1998, Gannon 2002, Gannon & Waples 2004),
particularly over long distances during the search
phase of foraging (Gannon et al. 2005).

Our examination of foraging by the
dolphin population in Turneffe Atoll, Belize,
had 3 research objectives: (1) to identify mi-
crohabitat types frequently used for foraging,
(2) to characterize the fish communities and
therefore potential prey items, and (3) to
evaluate the plausibility of passive listening
as a potential search method during for -
aging. Our methodology included 4 major
steps. First, we used boat surveys to observe
dolphins and record predominant group ac-
tivity. From these data, we determined loca-
tions that were frequently used for foraging
and other activities. Second, we returned to
dolphin sighting locations to quantify micro-
habitat types in areas favored by foraging
dolphins. Third, we measured fish distribu-
tion in favored foraging areas to examine
more precisely dolphin foraging microhabi-
tats. Finally, we employed acoustic surveys
to determine the likelihood of passive listen-
ing as a primary search strategy employed
by dolphins.

MATERIALS AND METHODS

Study site

The study was conducted in the southern portion of
Turneffe Atoll, Belize (Fig. 1). Observation of dolphin
Tursiops truncatus behavior is typically limited to
surface behavior. However, the shallow and clear
water of the Turneffe Atoll, Belize, allowed for under-
water observation of dolphins and visual census
methods unavailable in other locations. Additionally,
dolphins in Turneffe exhibit no evidence of shark
wounds (Campbell et al. 2002), suggesting that they
are not frequently preyed upon. This indicates that
habitat use is unlikely to be influenced by predation
risk.

While Belize shares many ecological features with
other areas of the Caribbean and Florida, USA, the
fish population differs substantially. The highly soni -
ferous Haemulidae, which are absent or uncommon
at many other locales, are the most common fish in
Belize (Sedberry & Carter 1993) and may be an
important prey source.

Turneffe Atoll was designated as a marine reserve
on 22 November, 2012. Management planning to
identify key conservation issues is currently under-
way, and information on predator habitat use and
community interactions will inform marine reserve
conservation plans.
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Fig. 1. Turneffe Atoll, Belize, with the locations of fish transect lines in-
dicated, along with the location of the Oceanic Society Field Station
(OS) on Blackbird Caye. FB: Fishing Bogue; LB: Long Bogue; HJC: 

Harry Jones’ Cut
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Dolphin behavior and microhabitats

Dolphin surveys and microhabitat characterizations
were completed from January 2003 through Novem-
ber 2004. Three survey routes, adapted from Bilgre
(1998), were used to ensure coverage of the entire
survey area each week. Groups were defined using
the chain rule (Smolker et al. 1992); dolphins were
considered part of the same group if each animal was
within 15 m of any other dolphin in the group. Travel-
ing was defined as dolphins moving parallel and
steadily in one direction over several minutes. Forag-
ing was defined as active pursuit of prey, regardless
of feeding success. Milling was de fined as individuals
changing orientation with re spect to each other.
 Dolphins were possibly engaged in prey searching
during this behavior. However, since no behaviors
 indicative of hunting were associated with the defini-
tion of this activity, milling was not defined as a forag-
ing behavior state for our study. Social behaviors
 included affilitative, aggressive, sexual, and non-
 contact displays be tween 2 or more dolphins. Animals
were considered at rest if they were floating at the
surface, unmoving, or moving very slowly.

During group-follows, the predominant group activ-
ity (defined by orientation, movement patterns, and
surface behavior of >50% of the group) was re corded
every 2 min. A GPS location was recorded every
20 min during dolphin group-follows. The goal of the
repeated 20 min assessments was to obtain an unbi-
ased sub-sampling of behavior states that would be
representative of the time dolphins spent engaged in
an activity and a random sampling of locations as
dolphins moved through the study area. GPS loca-
tions were also ground-truthed using observations
of underwater topography and triangulation with
nearby cayes.

To characterize microhabitats, we returned to the
marked GPS locations at the end of group-follows
and conducted visual characterizations of benthic
habitats while diving. Three radial 20 m transect
lines were placed along the bottom substrate, with
one shared end staked at the GPS point and the other
ends of the lines radiating out at ~120° intervals.
Each line was marked every one-tenth of a meter
with bold markings at every 1 m point. To measure
the bottom habitat coverage of seagrasses, algae, and
non-vegetated substrate (Kirkman 1996, Duarte &
Kirkman 2001), a 0.25 m2 quadrat was placed every
4 to 5 m along each radial line. Thus, there were 4 to
5 quadrats on each of 3 lines for a total of 12 to 15
quadrats at each GPS location. Percent seagrass,
algae, and bare-substrate cover estimates for each

quadrat were recorded on a dive slate by divers. A
laminated photocalibration guide of 20, 40, 60, 80,
and 100% seagrass coverage was made from repre-
sentative quadrats and used to standardize estimates
(Duarte & Kirkman 2001). The guide was attached to
the dive board and consulted during transects to esti-
mate the seagrass coverage to the nearest 10%.

The microhabitat within each quadrat was identified
following Mumby & Harborne (1999), which de fined 4
major classes of benthic coverage in the Carib bean:
coral, algal-dominated, seagrass-dominated, and bare
substratum-dominated. Two additional classes were
added for this study: mixed vegetation and boundary.
The mixed vegetation class was defined as a medium
density (as described by Mumby & Harborne 1999) of
approximately equal percentages of seagrass and al-
gae. Boundary microhabitats were areas of sharp and
distinct convergence of dense seagrass coverage and
open sand area. These class characterizations were
used, along with depth and site location, to describe
microhabitats frequented by dolphins. No imagery is
available for Turneffe Atoll at a resolution that allows
for a measurable distinction between these micro-
scale benthic types.

To quantify the relationship between habitat and
behavior, the associations between the predominant
group activity of the dolphins and microhabitat class
used were compared to an expected distribution. The
expected distribution was generated from the pro-
portion of each behavior class totaled across all habi-
tats. Under the null hypothesis that behavior and
habitat were unrelated, the proportion of each be -
havior class calculated from all sightings was applied
to the total number of sightings within each habitat.
The number of each observed behavior class in each
habitat was then compared to the expected number
and analyzed by chi-squared tests for independence
using R software (R Development Core Team 2011).

Visual census and acoustical transect

Three permanent transect lines, 25 m in length,
were placed in each of 3 locations, Fishing Bogue,
Long Bogue, and Harry Jones Cut, for visual census
of fish communities along the transition from sea-
grass to sand. These locations were chosen after sur-
veys revealed that they were the most frequent areas
used for foraging (combined 53.4% of all foraging
observations) and were boundary microhabitats.
Transect lines extended 10.5 m on either side of the
distinct transition between seagrass and sand. The
transect lines were snorkeled, and fish within 2.5 m
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of either side of the line were counted. Lines were
completed in approximately 15 min. Each fish was
counted at the meter at which it was observed along
the line, and its species was noted. Visual census
counts were made at varying times of day and tidal
states in order to look for spatial patterns in fish com-
munity distribution that were consistent over time.

The fish community distribution along each line
was analyzed using a linear mixed-effects model,
with different days of observations serving as the
random effect.

Coefficient subscripts distinguished their associa-
tion with a particular factor. The model predicts the
log abundance of fish (F) from the fixed effect of the
location along the line (L) and the random effect of
the day (D):

log Fij = µ + β × Li + Dj (1)

ANOVA comparisons of null models to models
including location along the transect line as the pre-
dictor variable were used to determine the statistical
significance of location on fish community distribu-
tion. The same process was used to analyze the rela-
tionship of Haemulidae distribution to location along
the transect line. A Bonferroni correction was used to
reduce Type I error resulting from the 2 tests — total
fish and Haemulidae — using the same data. Analy-
ses were completed using R software (R Develop-
ment Core Team 2011).

During the summer and fall of 2004, recordings of
fish calls were made between 8:30 and 17:30 h, with
the time for each line rotating between morning and
afternoon. The boat was anchored, and the en gine
was off for 20 min before recording. Recordings were
made at 3 points along each transect line. One point
was at the end of the transect line in the grass, one
was at the other end of the line in the sand, and the
third was directly on the boundary between the sand
and the grass. A High-Tech HTI-156-005 hydro -
phone with an internal preamplifier (High-Tech, Inc.)
and a Sony TCD-D8 DAT recorder were used to
make each 2 min long recording. The frequency
response of the hydrophone was uniform (±3 dB)
from 2 to 30 kHz. The sensitivity was measured by
the manufacturer at 170 dB re 1 µPa per volt from the
output of the preamp. The sampling rate of the DAT
was 44.1 kHz, resulting in a frequency range of 20 to
22 kHz (±1 dB). The hydrophone was placed 1.5 m off
the side of the boat and, following Gannon (2002),
was lowered to half-depth, between the surface and
the lagoon floor. Recordings were then analyzed for
sound production by fish using CoolEdit Pro (Syntril-
lium Software Corporation 1992–2000).

RESULTS

Dolphin behavior and microhabitats

In 2003, we conducted 132 surveys (410.6 h) of
which 95 surveys (72%) yielded a total of 116 sight-
ings of 1 or more dolphins. A total of 427 dolphins
were sighted. Seventy-five animals (17.6%) were
identified as calves. The mean group size was 2.8 ±
3.2 (± SD) dolphins. In 2004, we conducted 39 sur-
veys (103.2 h), of these 29 surveys (74.3%) yielded a
total of 39 sightings of 1 or more dolphins. A total of
129 dolphins were sighted, of these 15 (11.6%) were
calves. The mean group size was 3.2 ± 3.0 dolphins.
A total of 150 microhabitat characterizations were
completed over 73 surveys and 81 sightings.

Of the 6 defined microhabitat classes, 5 were fre-
quented by dolphins, with the majority of sightings in
seagrass (58%) and boundary microhabitats (17%)
(Table 1). Thirty-eight percent of foraging activity
occurred in seagrass areas, 40% occurred in bound-
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Micro-      Dolphin      All      All foraging   % foraging of
habitat       sight.      sight.         sight.             all sight.
                     (n)          (%)             (%)             in a habitat

Grass            87            58               38                      46
Boundary     25            17               40                      72
Sand             18            12               2                      0
Mixed           13            9               13                      54
Coral             7            5               7                      43

Table 1. Tursiops truncatus. Percentage of dolphin sightings 
(sight.) within each microhabitat class

Microhabitat class
Seagrass Sand Boundary Coral Mixed
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Fig. 2. Tursiops truncatus. Number of observations of dol-
phin behavior within each microhabitat class. The majority
of sightings occurred in seagrass microhabitats, where the
dominant behavior type was milling. In the boundary micro-

habitat, the dominant behavior was foraging
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ary areas, and 2% was in sand areas. Of the total
sightings within the seagrass, 46% were of foraging
activities, while 72% of sightings within the bound-
ary were foraging.

Foraging was observed in 31% of the 150 micro-
habitats that were measured, while milling was ob -
served in 42% (Fig. 2). Observed predominant group
activity differed significantly with microhabitat com-
pared to a random distribution of activity across
microhabitat (χ2 = 36.4, df = 12, p < 0.001) (Fig. 2).
Foraging activity occurred significantly more often in
boundary microhabitats than in seagrass microhabi-
tats when compared to non-foraging use (χ2 = 29.8,
df = 1, p < 0.001) (Fig. 3).

Visual census and acoustical transect

With a mean of 57 ± 46 fish line−1, Long Bogue had
the highest fish density compared to Fishing Bogue
(ANOVA post hoc LSD, α = 0.05, p = 0.001) and Harry
Jones Cut (p = 0.001). Fishing Bogue, with a mean of
38 ± 21 fish line−1, had more fish than did Harry Jones
Cut (p = 0.001), which had a mean of 19 ± 20 fish
line−1. Overall, grunts (family Haemulidae) were the
most abundant fish, with French grunts Haemulon
flavolineatum (20.2%) and bluestriped grunts Hae -
mu lon sciurus (18.6%) being the most abundant spe-
cies in total counts (Table 2).

For fish community distribution, a fifth-degree
polynomial, with location as the predictor, was the
best-fitting linear mixed-effect model, with the low-
est Akaike information criterion (AIC). Comparing
the location model to the null model resulted in 7 of

the 9 lines showing a significant correlation between
the fish abundance and the location along the tran-
sect line (Table 3). Peaks in average fish abundance
occurred in the boundary area of each line, regard-
less of depth or slope (Fig. 4). Inclusion of depth in
the linear mixed-effect model did not significantly
improve the model, with no decrease in the AIC.

Schools of grunts were frequently sighted at Fish-
ing Bogue and Long Bogue but were less common at
Harry Jones Cut. Their distribution was also related
to microhabitat, with more grunts observed in the
boundary area than in the grass or sand. A fifth-
degree polynomial was the best-fitting linear model
for the distribution of grunts along every transect
line. Grunt abundance was significantly correlated to
the location along the transect line for all 9 lines, with
the highest abundance occurring in the transition
region (Table 3).

Out of 271 acoustic 2 min samples (542 min), a total
of 23 fish calls were heard in 12 samples: 8 samples at
Long Bogue, 3 samples at Harry Jones Cut, and 1
sample at Fishing Bogue. Overall calling rate for the
271 samples was 0.0425 calls min−1 (1 call/11.76 min).
Call length ranged from 0.03 to 0.43 s, with a mean of
0.15 ± 0.14 s.

DISCUSSION

The location of foraging activity by bottlenose dol-
phins Tursiops truncatus at Turneffe Atoll and the
distribution of the fish community within boundary
microhabitats were both related to benthic habitat
type. The dolphins foraged proportionally more in
boundary microhabitats than in any other, despite
fewer observations of dolphins in these locations.

Visual fish census in boundary microhabitats de -
monstrated that fish congregate at the transition be -
tween seagrass and sand areas. Dolphins, as oppor-
tunistic predators, may feed whenever prey is
present and accessible (e.g. Cockcroft & Ross 1990,
Corkeron et al. 1990, Connor et al. 2000). Boundary
microhabitats may play a large role in providing a
reliable food source in an ecosystem with a relatively
low fish density. Because the boundary zone is a bor-
der area between sand and grass, the fish in the area
may be more visually exposed there than in seagrass
areas. Additionally, the area may reduce acoustic
clutter during echolocation or signal attenuation dur-
ing passive listening. In many areas, the boundary
microhabitat occurred on or by a slope that may pro-
vide a physical boundary the dolphins can use in
capturing prey.
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Fig. 3. Tursiops truncatus. Percent occurrence of each be-
havior type within seagrass, boundary, and sand microhabi-
tats. Milling was the dominant dolphin behavior within sea-
grass and sand microhabitats, whereas foraging was the 

dominant behavior within boundary microhabitats
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The greater abundance of fish at the transition be-
tween sand and seagrass may be the result of a posi-
tive edge effect often seen in terrestrial systems (re-
viewed in Ries et al. 2004). Other studies have found
that certain groups of fish, particularly predatory fish,
are found at higher densities at the edge of seagrass
and sand than within seagrass patches (Dorenbosch
et al. 2005, Smith et al. 2011). A positive edge effect

has been proposed as the explanation for the higher
faunal density found in smaller seagrass patches com-
pared to in larger patches (Macreadie et al. 2009). The
abundance of fish at these edges may be due to a high
abundance of the fishes’ prey species found in this
area, as demonstrated for pipefish (Mac readie et al.
2010). Haemulidae (grunts) and Lutja nidae (snappers)
species prey on small crustaceans (Cocheret de la
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Latin name                                    Common name                   Fishing Bogue         Long Bogue       Harry Jones Cut        Total

Haemulon flavolineatum            French grunt                               30.3                        11.1                        16.0                   20.2
Haemulon sciurus                        Bluestriped grunt                       11.1                        28.6                        12.7                   18.6
Haemulon chrysargyreum          Smallmouth grunt                      17.8                          0.0                          0.0                     7.8
Gerres cinereus                            Yellow mojarra                           17.5                          0.0                          0.2                     7.7
Lutjanus apodus                           Schoolmaster snapper                  1.5                        13.1                          6.2                     7.0
Acanthurus bahianus                   Ocean surgeonfish                       0.4                        14.3                          0.0                     6.1
Sparisoma aurafrenatum             Redband parrot                             6.8                          1.9                        14.8                     5.9
Sparisoma sp.                                Parrot sp.                                       1.8                          7.6                          1.3                     4.2
Halichoeres sp.                             Wrasse sp.                                     0.7                          4.3                          9.4                     3.5
Scarus croicensis                          Striped parrot                                3.7                          0.7                          8.5                     3.2
Thalassoma bifasciatum               Blue wrasse                                   0.9                          4.3                          4.5                     2.9
Scarus taeniopterus                      Princess parrot                              2.6                          0.3                          8.0                     2.4
Lutjanis mahogoni                        Mahogany snapper                      0.3                          3.1                          4.1                     2.0
Caranx ruber                                 Bar jack                                         1.0                          3.4                          0.0                     1.9
Acanthurus coeruleus                  Blue tang                                    <0.1                          3.3                          0.0                     1.4
Sparisoma radians                        Bucktooth parrot                           0.4                          0.0                          5.0                     0.9
Pomacentrus sp.                            Damselfish sp.                               1.5                          0.0                          1.4                     0.9
Mulloidichthys martinicus           Yellow goatfish                             0.1                          1.3                          0.1                     0.6
Gobiosoma sp.                               Goby sp.                                        0.0                          0.0                          3.0                     0.4
Sparisoma viride                           Stoplight parrotfish                      0.3                          0.1                          1.7                     0.4
Halichoeres garnoti                      Yellowhead wrasse                      0.2                          0.4                          0.2                     0.3
Acanthurus chirugus                    Doctorfish                                      0.0                          0.6                          0.0                     0.2
Ocyurus chrysurus                       Yellowtail snapper                        0.0                          0.5                          0.0                     0.2
Pseudupeneus maculates             Spotted goatfish                         <0.1                          0.2                          0.6                     0.2
Dasyatis americana                      Southern Stingray                        0.0                          0.3                          0.7                     0.2
Calamus calamuc                         Saucer-eyed porgy                     <0.1                          0.4                          0.0                     0.2
Hypoplectrus sp.                           Hamlet sp.                                     0.3                          0.0                          0.3                     0.2
Sphoeroides testudineus              Checkered puffer                         0.3                          0.0                          0.1                     0.1
Cantherhines pullus                     Orangespotted filefish                 0.1                          0.0                          0.6                     0.1
Caranx batholomaei                     Yellow jack                                   0.1                          0.1                          0.0                     0.1
Bothus lunatus                              Peacock Flounder                         0.0                          0.0                          0.6                     0.1
Lactophyrs polygonia                   Honeycomb cowfish                     0.0                        <0.1                          0.1                     0.1
Lactophyrs triqueter                     Smooth trunkfish                       <0.1                          0.0                          0.0                   <0.1
Lachnolaimus maximus               Hogfish                                          0.0                        <0.1                          0.0                   <0.1
Corythoichthys sp.                        Pipefish sp.                                    0.0                        <0.1                          0.0                   <0.1

Table 2. Percent of all observed fish species at Fishing Bogue, Long Bogue, and Harry Jones Cut, and totaled across all counts.
Ordered from most abundant to least abundant in terms of total counts. The 3 most abundant from total counts are in bold

Distribution                            Fishing Bogue                                      Long Bogue                                      Harry Jones Cut
                                      Line 1      Line 2      Line 3                 Line 1      Line 2      Line 3                    Line 1      Line 2      Line 3

Total fish                       14.84        7.78       21.95*                66.77**    49.73**    58.39**                 36.12**    47.02**    42.75**
Haemulidae              38.64**  18.57*   47.67**              80.29**    65.42**    62.28**                 75.81**    75.05**    93.72**

Table 3. For transect lines at Fishing Bogue, Long Bogue, and Harry Jones Cut, likelihood ratio results from ANOVA (α =
0.0028 with Bonferroni correction) comparison of null linear mixed-effects model to linear mixed-effects model, with location 

as the predictor value. *p < 0.0028, **p < 0.0001
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Mori nière et al. 2003), particularly penaeid and cari -
dean shrimps (Austin & Austin 1971, Carr & Adams
1973, Harrigan et al. 1989, Heck & Wein stein 1989,
Rooker 1995). Many crusta ceans and several poly-
chaete taxa are more abundant at the boundary be-
tween seagrass and sand than in either sand or sea-
grass (Barberá-Cebrián et al. 2002, Bologna & Heck
2002, Tanner 2005, Warry et al. 2009). This increase in
invertebrate density is similar to the edge effect seen
in certain terrestrial arthropod taxa (Samways et al.
1997, Didham et al. 1998, Kotze & Samways 2001,
 Major et al. 2003).

The limited recordings of fish sounds suggest the
fish community is not acoustically active diurnally.
Many of the species common in Belize and observed

during visual census are known to be soniferous.
However, sound production of fish, particularly scae -
nid and haemulid fish, is crepuscular or nocturnal,
particularly during spawning (Rountree et al. 2006).
Because surveys were completed between 8:30 and
17:30 h, peak calling times were most likely missed.
Dolphin observations and fish counts were also made
during the same diurnal range, al lowing the acoustic
and visual data to be correlated. Therefore, passive
listening for fish calls is highly unlikely to be the pri-
mary mechanism for diurnal prey detection in this
population. The tropical waters of Turneffe Atoll are
less turbid than the coastal waters of North Carolina
and Florida, USA, where passive listening has been
suggested to be an important means of finding prey
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Fig. 4. Comparison of slope and log fish density (no. of fish m−2, species listed in Table 2) for the fish transect lines at Fishing
Bogue and Harry Jones Cut: (A) Fishing Bogue Line 1, (B) Fishing Bogue Line 2, (C) Fishing Bogue Line 3, (D) Harry Jones Cut
Line 1, (E) Harry Jones Cut Line 2, and (F) Harry Jones Cut Line 3. Fish density is highest within 3 m of the boundary line, in-

dependent of the presence of slope
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(Barros & Wells 1998, Gannon 2002, Gannon &
Waples 2004, Gannon et al. 2005). Clearer waters
may allow for easier visual detection of fish and other
prey species. Echolocation and passive listening for
other prey cues, such as motion and feeding noises,
are also likely means of prey detection.

The selection of specific microhabitats for different
activities and the variation of fish density by sub-
strate have important conservation implications.
Until the November 2012 signing of legislation to
establish the Turneffe Atoll Marine Reserve, Turn-
effe Atoll, was the only atoll off the coast of Belize
lacking government protection. With a diverse habi-
tat of >200 mangrove cayes, the presence of endan-
gered species, including West Indian manatees and
American saltwater crocodiles, and relatively pristine
coral reefs, it is obvious that the need for protection is
high. In terms of management decisions for the new
reserve, microhabitat selection by dolphins and the
effect of substrate on fish density demonstrate the
necessity of habitat heterogeneity. Recent increases
in island development, mangrove burning, and
dredging may have large, negative impacts on the
lagoon environment and the dolphin population, par-
ticularly dolphin foraging areas and prey popula-
tions. Increased sedimentation in the water may also
impact the dolphins’ ability to detect prey if visual
detection is their primary means of finding food. With
the new Turneffe Atoll Marine Reserve, information
on dolphin microhabitat use and fish community dis-
tribution can now inform management planning and
the zonation of use within the reserve.

We envision 2 future studies what would further
enhance our understanding of the dolphins’ role in
the Turneffe Atoll ecosystem. High-resolution imag-
ing (not available in 2003 to 2004) could be used to
incorporate habitat availability. We caution that such
an exercise would also need to ascertain which areas
within the study site are actually available to dol-
phins (e.g. are deep enough for access) and how
habitat availability scales with dolphin density. Sec-
ond, studies could explore the possibility of a rela-
tionship between patch size and behavior.
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